Dying brain cells cue new brain cells to grow in songbird

Brain cells that multiply to help birds sing their best during breeding season are known to die back naturally later in the year. For the first time researchers have described the series of events that cues new neuron growth each spring, and it all appears to start with a signal from the expiring cells the previous fall that primes the brain to start producing stem cells.

Stem Cells Reveal How Illness-Linked Genetic Variation Affects Neurons

A genetic variation linked to schizophrenia, bipolar disorder and severe depression wreaks havoc on connections among neurons in the developing brain, a team of researchers reports. The study, led by Guo-li Ming, M.D., Ph.D., and Hongjun Song, Ph.D., of the Johns Hopkins University School of Medicine and described online Aug. 17 in the journal Nature, used stem cells generated from people with and without mental illness to observe the effects of a rare and pernicious genetic variation on young brain cells.

No extra mutations in modified stem cells, study finds

The ability to switch out one gene for another in a line of living stem cells has only crossed from science fiction to reality within this decade. As with any new technology, it brings with it both promise—the hope of fixing disease-causing genes in humans, for example—as well as questions and safety concerns. Now, Salk scientists have put one of those concerns to rest: using gene-editing techniques on stem cells doesn't increase the overall occurrence of mutations in the cells. "As cells are being reprogrammed into stem cells, they tend to accumulate many mutations," says Mo Li, a postdoctoral fellow in Belmonte's lab and an author of the new paper. "So people naturally worry that any process you perform with these cells in vitro—including gene editing—might generate even more mutations."

'Support cells' in brain play important role in Down syndrome

Researchers from UC Davis School of Medicine and Shriners Hospitals for Children – Northern California have identified a group of cells in the brain that they say plays an important role in the abnormal neuron development in Down syndrome. After developing a new model for studying the syndrome using patient-derived stem cells, the scientists also found that applying an inexpensive antibiotic to the cells appears to correct many abnormalities in the interaction between the cells and developing neurons. “We have developed a human cellular model for studying brain development in Down syndrome that allows us to carry out detailed physiological studies and screen possible new therapies,” said Wenbin Deng, associate professor of biochemistry and molecular medicine and principal investigator of the study. “This model is more realistic than traditional animal models because it is derived from a patient’s own cells.”

Stem Cells Hold Keys to Body’s Plan

Case Western Reserve researchers have discovered landmarks within pluripotent stem cells that guide how they develop to serve different purposes within the body. This breakthrough offers promise that scientists eventually will be able to direct stem cells in ways that prevent disease or repair damage from injury or illness.

How a Silly Putty ingredient could advance stem cell therapies

The researchers coaxed human embryonic stem cells to turn into working spinal cord cells more efficiently by growing the cells on a soft, utrafine carpet made of a key ingredient in Silly Putty. This research is the first to directly link physical, as opposed to chemical, signals to human embryonic stem cell differentiation. Differentiation is the process of the source cells morphing into the body's more than 200 cell types that become muscle, bone, nerves and organs, for example.

NIH stem-cell programme closes

CRM will not continue in its current form. To that end, the NIH plans to hold a workshop in May to gather stem-cell researchers together and decide what to do with the programme and its remaining budget.

World Stem Cell Summit 2013

The World Stem Cell Summit is an annual symposium highlighting advancements in the field of regenerative medicine. CNS Foundation attended as a voice for patient advocates, both speaking as an expert and making a presence at a number of panels across a variety of disciplines. Read more about our experience below!